How the Brain Works: A Primer for Judges

Wilfred G. van Gorp, Ph.D., ABPP
Professor of Clinical Psychiatry &
Director, Neuropsychology
Columbia Univ. Dept. Psychiatry
New York, NY 10032
(212) 342-1589
How the Brain Works

- Brain is a gelatinous-like organ
- Cerebrum responsible for cognition
- Cortical (covering) regions mediate specific aspects of mentation (language, spatial)
- Subcortical (deeper structures below the exterior) regions relate to speed of processing, some motor functions and some emotional functions
Leaving No Lobe Unturned
“How the Brain Works”

- The brain has a systematic organization of structure/function
- Follows specific principles that are generally accepted in neuroscience
- However, there is absolutely no 1:1 correspondence of structure/function
- Regions *mediate* function rather than *control* it
- We are not phrenologists--Gall, with bumps on the head
How the Brain Works: Detecting an Abnormality (2)

- Must follow deductive reasoning: there is a pattern or constellation of cognitive deficits that warrant a conclusion
- A conclusion of a specific brain area affected by impairment on a single cognitive task (test) is not warranted
- Certainly cannot relate to cellular level
How the Brain Works: Detecting an Abnormality (3)

- Luria taught us the approach
- Neuropsychologists and behavioral neurologists reason much as Judges using “if, then” approach
- In general, it must add up for a conclusion to be accurate
- One finding (e.g. test score, neurologic finding) *usually* does not a conclusion make
Lateralization

- Each hemisphere has a specialization: in most right handers, the right hemisphere is dominant for language and the left hemisphere for spatial reasoning.
- Within each hemisphere, as we go from the back (posterior) to the front (anterior) the brain becomes more specialized.
- Contralateral (opposite) motor control.
Left Hemisphere

- LANGUAGE in most persons: a left hemisphere lesion can produce an aphasia
- Word finding problems most common language problem in left hemisphere damage
- Verbal memory (left temporal lobe)
- Linear (step by step) reasoning; analyzing component parts rather than the entire ‘gestalt’
Right Hemisphere

- Spatial reasoning, such as reading a road map or analyzing blueprints
- Spatial reasoning, such as copying a complex figure
- “Gestalt” or global perspective
Areas/Lobes of the Brain

- Cerebellum
- Cerebrum:
 - Occipital
 - Temporal
 - Parietal
 - Frontal
Left Hemisphere Damage

- Aphasia (language abnormality)
- Verbal memory impairment
- Decreased word generation or fluency
- Details missing or ignored
Right Hemisphere Damage

- Impaired spatial reasoning
- Patient may get lost due to route finding impairment
- Impairment of ‘pragmatics’ and non-linguistic aspects of speech such as social cues
- “Gestalt” lost in copying a design
Cerebellum
How the Brain Works: Cerebellum

- Motor movements such as gait
- Disorders of the cerebellum produce motor ataxia (impaired walking or gait) and can produce some impaired upper extremity coordination
- Disorders such as chronic alcoholism or stroke can produce a cerebellar syndrome of gait ataxia
Occipital Lobe

- Vision
- Cortical blindness can result from damage to the occipital region
- Area in the occipital lobe about the size of a credit card necessary for processing vision
Parietal Lobe

- Integration of functions—language in left hemisphere, spatial in right hemisphere
- Praxis (the ability to do on command what one can do spontaneously)
Rey Osterrieth
Complex Figure
Copy in a 28 y/o Man with NLD
Copy in a 58 y/o Woman with Dementia
Temporal Lobe

- Temporal Lobe
- Occipital Lobe
- Parietal Lobe
- Frontal Lobe
- Cerebellum
Temporal Lobes

- Memory (verbal, left; visual, right)
- Certain personality characteristics
- Mesial Temporal Lobes: Hippocampus, critical for memory
Frontal Lobe
Frontal Lobes

- One third of the brain
- “Executive functions” -- planning, strategy formation, cause/effect issues, inhibition, judgment
- Last part of brain to myelinate (children are “frontal lobe cases”)
- Relates to the ability to form intent
- Think before act in intact persons
Brain Imaging in Brain Function/Dysfunction

- CT/MRI often normal in some neurolgic disorders producing cognitive impairment (e.g. closed head injury (TBI); some dementias)
- High resolution MRI might show abnormalities (e.g. TBI)
- Neuropsychological (NP) tests sensitive to subtle cognitive effects such as early AD, subtle TBI, etc.
- NP provides functional measure of ability after neurologic illness
Brain Imaging

- Structural: Architecture of the Brain
 - E.g. CT or MRI

- Functional: Activity of the Brain
 - E.g., Single Photon Emission Tomography (SPECT) or Positron Emission Tomography (PET)
Brain Imaging: Structural

- CT and MRI most common
- Measures of brain architecture
- They measure the *structure* of the brain, not the *function*
- Space occupying lesions and structural abnormalities (e.g. enlarged ventricles, generalized atrophy—shrinkage) appear on structural brain imaging
Structural Image with Lesion
Example of MRI with Enlarged Ventricles
Functional Neuroimaging: PET and SPECT

- PET works by injecting an energy source available to the brain and determining areas of increased/reduced activity or blood flow
- Utilizes a database of normals (how many?) with dozens (hundreds?) of areas/pixels
- Potential for false + and false -
Functional Neuroimaging: Positron Emission Tomography
Brain Imaging

- Much like the news, just because it’s in print (picture form) doesn’t mean it’s real
- Just because it looks like the brain doesn’t mean it is the brain
- Mathematic reconstruction based upon density of water or metabolic uptake (PET) or blood flow (SPECT) to produce colorful image
Brain Imaging

- Functional Imaging can have significant false positive and false negative findings.
- Indeed, colossal errors can occur.
- Much relates to normative database for the reconstruction of the image.
- Thousands of pixel reconstructions based upon oftentimes small samples of data.
Clinical Correlation Important

- Important to correlate structural or functional imaging findings with clinical findings, such as from neuropsychological testing
- Are the imaging findings relevant? E.g. “unidentified bright objects” or false positives
Cognitive Testing

- Usually performed by a neuropsychologist
- Specialist within psychology
- Generic license for psychologist but board certification available for ‘neuropsychologist’
- Neuropsychology: Use of formal psychometric tests to detect a cognitive or intellectual abnormality
Format of Neuropsychological Examination

- Interview
- Administration of a battery of tests
 - Tests can be a collection of discrete tests or a published battery such as the Halstead Reitan NP Battery or the Neuropsychology Assessment Battery (NAB)
 - Tests usually take several hours (up to 8 or so) to administer, then must be scored & normed
Frye and Daubert Issues

- Most peer reviewed published tests are accepted by community
- “Legitimate” published tests (by national publishers) have undergone peer review with known validity and reliability
- Validity: Does it measure what it purports to measure
- Reliability: Same findings over time
Frye and Daubert Issues

- Sources of information on test validity and reliability: *Standards for Educational and Psychological Testing* published by the American Psychological Association
- Burros Institute’s: *Mental Measurements Yearbook*. Peer reviews of tests
Areas Commonly Assessed

- Motivation/Level of Effort
- Intelligence
- Academic abilities (if appropriate)
- Attention/concentration

- Language
- Visuospatial
- Learning & Memory
- Motor
- Executive/Frontal
- Mood & Personality
Motivation

- Valid assessment assumes full effort
- If level of effort is compromised, then entire battery of results is in question
- “Effort testing” should always be done whenever there is a reward for appearing more impaired than is really the case
- Need for more sophisticated tests as examinees become more sophisticated
Methods to Assess Motivation or Level of Effort

- Tests have been improved considerably over the past decade or more
- Original tests used “symptom validity” approach--two choices and did the person perform below chance using binomial theorem?
- Now we recommend using multiple tests to assess effort
Tests for Effort (Malingering)

- Best examples are ‘Test of Memory Malingering” (TOMM) or ‘Validity Indicator Profile’
- Panoply of tests available, some useful, some have too high of a false + or false - rate
- Most not appropriate for mental retardation or dementia
Test of Memory Malingering

- Test of Memory Malingering (TOMM)
 - Looks very difficult but in fact, most patients obtain near perfect scores
 - Measures “working memory” rather than secondary memory
 - Validated across many clinical groups
 - Good data on true versus false positives: good sensitivity and specificity
Validity Indicator Profile (VIP)

- Verbal & Nonverbal portions
- Most accurate when using both parts
- Easy/difficult items mixed up
- Two choices for each question
- Answers graphed from easiest to hardest, producing a performance curve
Mixed Strategies: VIP

- Four results: valid, inconsistent, irrelevant, suppressed
- Inconsistent means person intended to do well but exerted varying levels of effort
- Irrelevant means the person responded without regard to item content: that is, they responded randomly
- Suppressed=picking the WRONG answer (intentionally)
VIP

- One of the most sophisticated of all the effort tests
- Some of the best accuracy data
- Be careful with an inconsistent result: most false positives here
Detection of Malingering

- Clinical NP tests used also: Do the results make “neuropsychological sense?”
- Are the results consistent with behavior in the exam or known functioning?
Effort: Special Populations

- Mental illness
 - Depressed patients may be inconsistent
 - Schizophrenia or psychotic illness might cause failure on “ceiling effect” tests producing false positives

- People with known brain dysfunction can “fail” effort tests for many reasons

- Mental Retardation
 - 50% inconsistent on VIP nonverbal
 - Dot Counting Test least effected in MR
Malingering

- Does not usually identify whether poor effort is due to conscious or non-conscious factors
- Only two means to determine result is due to conscious factors:
 - Statistically below chance performance
 - Surveillance showing the person doing things inconsistent with the testing
Intelligence

- Wechsler Adult Intelligence Scale-IV (WAIS-IV)
 - Most known of all IQ tests
 - Gold standard
 - Now, just Full Scale IQ and GAI
 - VCI, PRI, WMI, PSI (PSI most sensitive)
 - Relate these results to estimate of premorbid IQ
Attention/Concentration

- Frontal and subcortical regions
- Simple attention (digit span)
- Sustained attention (CPT)
- Divided attention
- Severe attentional problem can signal a delirium which affects all cognition
- Mild attentional problems due to many disorders including ADHD, frontal systems disturbance or medication effects
Language

- Sensitive to disturbances or injury to the dominant (usually left) hemisphere
- Naming ability (word finding) most sensitive function to left hemisphere injury
- Aphasia--subtypes relate to location of damage and can affect comprehension and production of language
Visuospatial

- Sensitive to right hemisphere dysfunction
- Analogous to map reading or analyzing blueprints
- More “silent” areas of dysfunction
- Can still be quite disabling
- Need this to “read people” and interpret nonverbal social cues
Learning & Memory

- Sensitive to temporal lobe dysfunction
- Critical to assess--important for everyday activities/abilities
- Usually affected in traumatic brain injury because of anatomy
- Test both verbal & nonverbal; list learning and story recall
- Memory impairment ubiquitous in neurologic disorders affecting cerebrum
Executive

- Critical domain to evaluate: can relate to ability to form intent
- Relates to planning, judgment, impulse control, inhibition, adjusting to novelty
- Impairment has major implications for working, behaving appropriately, planning, handling novelty, *even if IQ is high*
Examples of Executive Function Tests

- Wisconsin Card Sorting Test (WCST)
- Stroop Color Interference Test
- Mazes
- Judgment
- Trail Making Test B or Color Trails 2
- Category Test
- Behavior
Important to assess as depression or anxiety can affect results

Many objective tests have validity scales

Depression can result from neurologic illness

Don’t overinterpret: many personality tests were not normed on neurologic patients

E.g. “Schizophrenia” scale on MMPI-2 often elevated in persons with a seizure disorder

Caution with Rorschach & other projective tests in neurologic patients
Forensic Applications for NP

- Assist with detection of poor effort
- Do the data converge to suggest a neurologic injury?
- Determination of the *severity* of injury
- Determination of the *type* of cognitive impairment (e.g. executive dysfunction)
Misuses of NP Test Results

- Over-interpretation--basing a conclusion on a single score
- Concluding ‘impairment’ based upon variability amongst normal range scores
- Performing a ‘standard interpretation’ in an unstandard situation, such as with special populations (mentally retarded, aphasic, ESL)
Misuses, continued

- Likelihood of false positive findings greater than false negative findings based on number of tests/scores obtained
- Must factor in emotional state as a potential contributor of abnormal results
- Conclusion of impairment because of assertion of extremely high premorbid ability
Misuses, continued

- Inappropriate normative data for cognitive tests of PET findings
 - Small samples
 - Demographic mismatching for cognitive tests
 - Cultural/language factors for cognitive tests
 - Even within the same language, regional/cultural differences exist (e.g. Spain vs. US vs. South America; UK vs. US)
Integration of Information

- There should be converging agreement amongst quantitative measures of brain function such as imaging & cognitive results
- Tools only as good as the clinicians, experts and courts interpreting them
- Potential for false positive results high
Caveat Emptor

- It has been said that *Science is Truth Found Out*
- It has also been said *The Truth Can Be Made Up if You Know How*
- Be wary and analytical: often common sense is, in the end, the most useful tool
- Sound methods and sound interpretation lead to sound conclusions