In the history of the Immigration Court within the United States Department of Justice, there has not been an attempt to devise an empirical system for allocating judges to address the caseload in the most optimal manner. This paper is an attempt to develop an empirical method to determine the numbers of immigration judges necessary to address the caseloads in the fifty-two immigration courts nationwide. There are two established methods for determining the need for judges, caseload weighting and simulation. Caseload weighting is an attempt to equalize filings to arrive at the amount of time necessary and then equalize the caseload across judges and courts within a jurisdiction. Simulation models are complex systems analyses of courts to determine the effect of inputs (such as judges and staff) and outputs (case dispositions). These complex models allow analysts to ask “what if” questions and to evaluate what effect changes such as adding more judges has on dispositions. Simulation and Caseload Weighting systems are obviously well established, valid and rigorous methods for allocating judges within a court system. They are, however, time consuming, expensive, and rely upon expertise that is beyond most court staff’s knowledge. This paper proposes an alternative method that uses completion data to determine the number of judges necessary to handle the caseloads at the 52 Immigration Courts nationally.

The goal of this paper is to determine the allocation of immigration judges by using
completion data (complete census data obtained from data queries from the database developed for immigration courts) to arrive at the completion rates for each immigration court. This method is referred to as the completion data method. The method is then used to project the numbers of judge days needed to complete the caseload and this is then translated into numbers of judges. The amount of time to complete the caseload and the projected caseload yields interesting data; the method can be adjusted for longer or shorter caseload completion periods and also to address different amounts of backlogged or pending cases at each immigration court.

The research methodology used here was to apply the goal of past systems of caseload weighting to develop a new system with the use of complete database technology. Caseload weighting systems are labor intensive and expensive; the goal here was to use the data available to see if it would result in a rational system. Court database technology has become increasingly sophisticated in the past ten years; many systems are capable of giving data that eliminates the need for the methods of caseload weighting that have been applied in the past. The system yields all the information necessary to estimate the need for judges.

The method applied here yielded reasonable and rational results in projecting the need for immigration judges. The completion data method produced results that projected the need for judges where the pending caseload was highest and the method could be adjusted to add judges incrementally. Incremental additions of judges would be more likely to be funded by budget decision makers.

This method is merely a beginning point for using sophisticated databases to estimate judge needs. The ability to collect, collate and to project statistical information from computers will only increase; programming formulas such as developed here will likely become standard and court disposition information will become more precise.
This research paper is available in its entirety in portable document format. To access, you must first obtain and install the Adobe Acrobat Reader.

To obtain a borrow of this research paper, please contact:

Knowledge Information Services
National Center for State Courts
300 Newport Avenue
Williamsburg, VA 23185
Phone: (800) 616-6164

Visit the Institute for Court Management Web site at:
www.ncsconline.org/d_icm/icmindex.html